Elastic Pendulum Model

Source Notebook

Model of an elastic pendulum

Examples

Basic Examples (2) 

Retrieve the model:

In[1]:=
ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\)]
Out[1]=

The icon:

In[2]:=
ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "Icon"]
Out[2]=

Scope & Additional Elements (4) 

Available content elements:

In[3]:=
\!\(\*
TagBox[
RowBox[{"ResourceObject", "[", "\"\<Elastic Pendulum Model\>\"", "]"}],
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\)["ContentElements"]
Out[3]=

The available model types:

In[4]:=
ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "AvailableModelTypes"]
Out[4]=

The operating point:

In[5]:=
ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "OperatingPoint"]
Out[5]=

The parameters:

In[6]:=
ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "Parameters"]
Out[6]=

Analysis (3) 

The numerical model of the system:

In[7]:=
nssm = ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "NonlinearStateSpaceModel"] /. ResourceData[\!\(\*
TagBox["\"\<Elastic Pendulum Model\>\"",
#& ,
BoxID -> "ResourceTag-Elastic Pendulum Model-Input",
AutoDelete->True]\), "Parameters"]
Out[7]=

Its state response starting from a horizontal position:

In[8]:=
sr = StateResponse[{nssm, {0, 0, 90 °, 0}}, 0, {t, 0, 4}]
Out[8]=

The parametric plots of the response:

In[9]:=
With[{psr = Partition[sr, 2]}, {psr, {{"r", "r'"}, {"\[Theta]", "\[Theta]'"}},
     psr /. t -> 0}\[Transpose]];
In[10]:=
Grid[{Table[
   ParametricPlot[a[[1]], {t, 0, 4}, Sequence[
    PlotTheme -> "Web", AspectRatio -> Full, Frame -> True, FrameLabel -> Part[a, 2], Axes -> False, ColorFunction -> (ColorData["AvocadoColors"][#3]& ), Epilog -> {
PointSize[Large], 
Point[
Part[a, 3]]}, PlotRange -> All]], {a, %}]}, Spacings -> 2]
Out[10]=

Suba Thomas, "Elastic Pendulum Model" from the Wolfram Data Repository (2025)  

Data Resource History

Source Metadata

Publisher Information