Wolfram Data Repository
Immediate Computable Access to Curated Contributed Data
A dataset containing the prices and other attributes of almost 54,000 diamonds
In[1]:= | ![]() |
Out[1]= | ![]() |
Dimensions:
In[2]:= | ![]() |
Out[2]= | ![]() |
Column keys and column descriptions:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Column types:
In[5]:= | ![]() |
Out[5]= | ![]() |
Find the heaviest diamond in the data:
In[6]:= | ![]() |
Out[6]= | ![]() |
Find the most expensive diamond in the data:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
Compute the average price per carat in the data depending on all four 'C's - color, cut, clarity, and carat and sort by price:
In[9]:= | ![]() |
Out[9]= | ![]() |
Create a pivot table for the average price per carat depending on color and clarity:
In[10]:= | ![]() |
Out[10]= | ![]() |
Visualize the price as a function of weight:
In[11]:= | ![]() |
Out[11]= | ![]() |
Assuming carat-price space, analyze the color distribution:
In[12]:= | ![]() |
In[13]:= | ![]() |
To make the plot more readable take a random sample from the data:
In[14]:= | ![]() |
In[15]:= | ![]() |
In[16]:= | ![]() |
The bounding rectangle for carat-price points:
In[17]:= | ![]() |
Create SpatialPointData object with "color" annotation:
In[18]:= | ![]() |
Out[18]= | ![]() |
Use PointValuePlot to visualize the diamond colors across carat-price space:
In[19]:= | ![]() |
Out[19]= | ![]() |
Gosia Konwerska, "Sample Tabular Data: Diamonds" from the Wolfram Data Repository (2025)