Wolfram Data Repository
Immediate Computable Access to Curated Contributed Data
A dataset containing the prices and other attributes of almost 54,000 diamonds
| In[1]:= |
| Out[1]= | ![]() |
Dimensions:
| In[2]:= |
| Out[2]= |
Column keys and column descriptions:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= | ![]() |
Column types:
| In[5]:= |
| Out[5]= | ![]() |
Find the heaviest diamond in the data:
| In[6]:= |
| Out[6]= | ![]() |
Find the most expensive diamond in the data:
| In[7]:= |
| Out[7]= | ![]() |
| In[8]:= | ![]() |
| Out[8]= | ![]() |
Compute the average price per carat in the data depending on all four 'C's - color, cut, clarity, and carat and sort by price:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Create a pivot table for the average price per carat depending on color and clarity:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
Visualize the price as a function of weight:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
Assuming carat-price space, analyze the color distribution:
| In[12]:= |
| In[13]:= |
To make the plot more readable take a random sample from the data:
| In[14]:= |
| In[15]:= |
| In[16]:= |
The bounding rectangle for carat-price points:
| In[17]:= |
Create SpatialPointData object with "color" annotation:
| In[18]:= |
| Out[18]= | ![]() |
Use PointValuePlot to visualize the diamond colors across carat-price space:
| In[19]:= |
| Out[19]= | ![]() |
Gosia Konwerska, "Sample Tabular Data: Diamonds" from the Wolfram Data Repository (2025)