Proportional Op-amp Model

Model of a Proportional (P) controller op-amp circuit

Examples

Basic Examples (2) 

Retrieve the model:

In[1]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\)]
Out[1]=

The icon:

In[2]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "Icon"]
Out[2]=

Scope & Additional Elements (6) 

Available content elements:

In[3]:=
\!\(\*
TagBox[
RowBox[{"ResourceObject", "[", "\"\<Proportional Op-amp Model\>\"", "]"}],
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\)["ContentElements"]
Out[3]=

The state space model:

In[4]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "StateSpaceModel"]
Out[4]=

The input variables:

In[5]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "InputVariables"]
Out[5]=

The output variables:

In[6]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "OutputVariables"]
Out[6]=

The complex variable:

In[7]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "ComplexVariable"]
Out[7]=

The model parameters:

In[8]:=
ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\), "Parameters"]
Out[8]=

Visualizations (1) 

The proportional action for various input frequencies and values of 1 and 2:

In[9]:=
Manipulate[
 Plot[{Sin[\[Omega] t], Evaluate@OutputResponse[ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\)] /. {Subscript[\[ScriptCapitalR], 1] -> r1, Subscript[\[ScriptCapitalR], 2] -> r2}, Sin[\[Omega] t], {t, 0, 10}]}, {t, 0, 10}, Sequence[
  PlotLegends -> Placed[{"input", "output"}, Below], Frame -> True]], Sequence[{{\[Omega], 1}, 0.1, 10, ImageSize -> 75},
   Delimiter, {{r1, 100, 
Subscript[\[ScriptCapitalR], 1]}, {100, 330, 500, 1000}}, {{r2, 330, 
Subscript[\[ScriptCapitalR], 2]}, {100, 330, 500, 1000}}], Sequence[
 ControlPlacement -> Left, SaveDefinitions -> True]]
Out[9]=

Analysis (1) 

The magnitude is frequency independent and the phase lag is a constant 180 °:

In[10]:=
Manipulate[BodePlot[ResourceData[\!\(\*
TagBox["\"\<Proportional Op-amp Model\>\"",
#& ,
BoxID -> "ResourceTag-Proportional Op-amp Model-Input",
AutoDelete->True]\)] /. {Subscript[\[ScriptCapitalR], 1] -> r1, Subscript[\[ScriptCapitalR], 2] -> r2}, Sequence[
  PlotRange -> {{-20, 20}, Automatic}, ImageSize -> Small, PlotLayout -> "HorizontalGrid", PlotLabel -> {"magnitude", "phase"}]], Grid[{{
Control[{{r1, 100, 
Subscript[\[ScriptCapitalR], 1]}, {100, 330, 500, 1000}}], 
Control[{{r2, 330, 
Subscript[\[ScriptCapitalR], 2]}, {100, 330, 500, 1000}}], Null}}, Spacings -> 2], SaveDefinitions -> True]
Out[10]=

Suba Thomas, "Proportional Op-amp Model" from the Wolfram Data Repository (2025)  

Data Resource History

Source Metadata

Publisher Information