Wolfram Research

Sample Data: Childhood Leukaemia Lymphoma

Source Notebook

Locations of childhood leukaemia and lymphoma annotated with case/control marks

Details

Locations of childhood leukaemia and lymphoma in a polygonal observation region bounded by the region Rectangle[{4690., 4150.}, {5411., 4758.}] * 100 meters, annotated with case/control marks.

Examples

Basic Examples (1) 

In[1]:=
ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"]
Out[1]=

Summary of the spatial point data:

In[2]:=
ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"]["Summary"]
Out[2]=

Visualizations (2) 

Plot the spatial point data:

In[3]:=
ListPlot[ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"], AspectRatio -> 1]
Out[3]=

Plot the points with type annotations:

In[4]:=
PointValuePlot[ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"], PlotLegends -> Automatic]
Out[4]=

Analysis (3) 

Compute probability of finding a point within given radius of an existing point - NearestNeighborG is the CDF of the nearest neighbor distribution:

In[5]:=
nnG = NearestNeighborG[ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"]]
Out[5]=
In[6]:=
maxR = nnG["MaxRadius"]
Out[6]=
In[7]:=
DiscretePlot[nnG[r], {r, maxR/100, maxR, maxR/100}, AxesLabel -> {"radius", "probability"}]
Out[7]=

Mean distance between a typical point and its nearest neighbor (for positive support distribution can be approximated via a Riemann sum of 1-CDF):

In[8]:=
step = maxR/100;
partition = Table[{k, k + step}, {k, 0, maxR, step}];
values = nnG[Mean /@ partition];
In[9]:=
Total[(1 - values)*step]
Out[9]=

Test for complete spacial randomness:

In[10]:=
SpatialRandomnessTest[ResourceData[\!\(\*
TagBox["\"\<Sample Data: Childhood Leukaemia Lymphoma\>\"",
#& ,
BoxID -> "ResourceTag-Sample Data: Childhood Leukaemia Lymphoma-Input",
AutoDelete->True]\), "Data"], {"PValue", "TestConclusion"}]
Out[10]=

Gosia Konwerska, "Sample Data: Childhood Leukaemia Lymphoma" from the Wolfram Data Repository (2021)  

Data Resource History

Source Metadata

Publisher Information