Regular Computational Complexity Graph

Source Notebook

WWW Graph of Computational Complexity for Link Analysis Ranking Experiments

WWW Graph of Computational Complexity for Link Analysis Ranking Experiments: The Base Set is constructed by including only the first 50 out-links of each Root page. We use the simple algorithm for detecting intra-domain links.

(832 vertices, 1555 edges)

Examples

Basic Examples

Retrieve the graph:

In[1]:=
ResourceData["Regular Computational Complexity Graph"]
Out[1]=

Summary properties:

In[2]:=
ResourceData["Regular Computational Complexity Graph", All]["Summary"]
Out[2]=

Basic Applications

Show the power-law degree distribution of the graph:

In[3]:=
g = ResourceData["Regular Computational Complexity Graph"];
In[4]:=
Histogram[VertexDegree[g], {"Log", {1, 1000, 5}}, {"Log", "PDF"}, AxesLabel -> {
  "Degree \!\(\*\nStyleBox[\"k\",\nFontSlant->\"Italic\"]\)", "\!\(\*SubscriptBox[\(p\), \(k\)]\)"}]
Out[4]=

Show a table of properties:

In[5]:=
Dataset[Table[<|
   i -> i[g]|>, {i, {GraphReciprocity, GlobalClusteringCoefficient, GraphAssortativity}}]]
Out[5]=

Wolfram Research, "Regular Computational Complexity Graph" from the Wolfram Data Repository (2019)  

Data Resource History

Source Metadata

Data Downloads

Publisher Information