Wolfram Data Repository
Immediate Computable Access to Curated Contributed Data
Locations of scallop samples in the Atlantic Ocean, annotated with the numbers and types of scallops caught
In[1]:= | ![]() |
Out[1]= | ![]() |
Summary of the spatial point data:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot the spatial point data:
In[3]:= | ![]() |
Out[3]= | ![]() |
Visualize the data with some annotations:
In[4]:= | ![]() |
Out[4]= | ![]() |
Visualize the smooth point density of the data:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Use SpatialEstimate to create an estimate of recruit percentage from sparse catch locations. First select locations with positive catch numbers:
In[7]:= | ![]() |
In[8]:= | ![]() |
Compute rate of recruits relative to the catch size:
In[9]:= | ![]() |
Compute spatial prediction:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Visualize the recruits rates over the whole observation region:
In[12]:= | ![]() |
Out[12]= | ![]() |
Gosia Konwerska, "Sample Data: Scallop Abundance" from the Wolfram Data Repository (2022)