Wolfram Data Repository
Immediate Computable Access to Curated Contributed Data
Locations of scallop samples in the Atlantic Ocean, annotated with the numbers and types of scallops caught
| In[1]:= |
| Out[1]= | ![]() |
Summary of the spatial point data:
| In[2]:= |
| Out[2]= | ![]() |
Plot the spatial point data:
| In[3]:= |
| Out[3]= | ![]() |
Visualize the data with some annotations:
| In[4]:= |
| Out[4]= | ![]() |
Visualize the smooth point density of the data:
| In[5]:= |
| Out[5]= | ![]() |
| In[6]:= | ![]() |
| Out[6]= | ![]() |
Use SpatialEstimate to create an estimate of recruit percentage from sparse catch locations. First select locations with positive catch numbers:
| In[7]:= |
| In[8]:= |
Compute rate of recruits relative to the catch size:
| In[9]:= | ![]() |
Compute spatial prediction:
| In[10]:= |
| Out[10]= | ![]() |
| In[11]:= |
Visualize the recruits rates over the whole observation region:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
Gosia Konwerska, "Sample Data: Scallop Abundance" from the Wolfram Data Repository (2022)