Wolfram Data Repository
Immediate Computable Access to Curated Contributed Data
A dataset containing the prices and other attributes of almost 54,000 diamonds
In[1]:= |
Out[1]= |
Dimensions:
In[2]:= |
Out[2]= |
Column keys and column descriptions:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Column types:
In[5]:= |
Out[5]= |
Find the heaviest diamond in the data:
In[6]:= |
Out[6]= |
Find the most expensive diamond in the data:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
Compute the average price per carat in the data depending on all four 'C's - color, cut, clarity, and carat and sort by price:
In[9]:= |
Out[9]= |
Create a pivot table for the average price per carat depending on color and clarity:
In[10]:= |
Out[10]= |
Visualize the price as a function of weight:
In[11]:= |
Out[11]= |
Assuming carat-price space, analyze the color distribution:
In[12]:= |
In[13]:= |
To make the plot more readable take a random sample from the data:
In[14]:= |
In[15]:= |
In[16]:= |
The bounding rectangle for carat-price points:
In[17]:= |
Create SpatialPointData object with "color" annotation:
In[18]:= |
Out[18]= |
Use PointValuePlot to visualize the diamond colors across carat-price space:
In[19]:= |
Out[19]= |
Gosia Konwerska, "Sample Tabular Data: Diamonds" from the Wolfram Data Repository (2025)