747 Longitudinal Model

Source Notebook

Model of the longitudinal dynamics of a Boeing 747

Examples

Basic Examples (3) 

Retrieve the model:

In[1]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\)]
Out[1]=

The icon:

In[2]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "Icon"]
Out[2]=

The annotation:

In[3]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "Annotation"]
Out[3]=

Scope & Additional Elements (5) 

Available content elements:

In[4]:=
\!\(\*
TagBox[
RowBox[{"ResourceObject", "[", "\"\<747 Longitudinal Model\>\"", "]"}],
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\)["ContentElements"]
Out[4]=

The transfer function model:

In[5]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "TransferFunctionModel"]
Out[5]=

The input variables:

In[6]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "InputVariables"]
Out[6]=

Other variables:

In[7]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "OtherVariables"]
Out[7]=

Temporal variable:

In[8]:=
ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "TemporalVariable"]
Out[8]=

Visualizations (1) 

A root-locus plot of the system:

In[9]:=
RootLocusPlot[k (ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "TransferFunctionModel"] /. ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "Parameters"])[s], {k, 0, 5}, AspectRatio -> Full, Frame -> True, PlotRange -> All]
Out[9]=

Analysis (2) 

Its response to an initial perturbation in the pitch angle θ is sluggish and oscillatory:
In[10]:=
OutputResponse[{ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\)] /. ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "Parameters"], {0, 0, 0.3}}, 0, {t, 0, 1800}];
Plot[%, {t, 0, 1800}, PlotRange -> All]
Out[11]=
This is because the eigenvalues of the linear system are close to the imaginary axis:
In[12]:=
MatrixForm[Eigenvalues[Normal[ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "StateSpaceModel"]][[1]] /. ResourceData[\!\(\*
TagBox["\"\<747 Longitudinal Model\>\"",
#& ,
BoxID -> "ResourceTag-747 Longitudinal Model-Input",
AutoDelete->True]\), "Parameters"]]]
Out[12]=

Suba Thomas, "747 Longitudinal Model" from the Wolfram Data Repository (2025)  

Data Resource History

Source Metadata

Publisher Information